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Abstract. We consider interaction of a single level with a broad, tending to semi-infinite continuum. In
an example of two exactly solvable problems, we show that for time dependent quantum systems the
probability of the irreversible transition from a discrete level to a continuum is strongly inhibited or even
completely suppressed by the presence of a discrete adiabatic level near the continuum edge.

PACS. 03.65.-w Quantum mechanics – 34.10.+x General theories and models of atomic and molecular
collisions and interactions (including statistical theories, transition state, stochastic and trajectory models,
etc.) – 36.40.-c Atomic and molecular clusters

A quantum system which consists of a level interacting
with a semi-infinite continuum has a remarkable prop-
erty: for any coupling strength and for an arbitrary level
position at the energy scale it possesses a discrete energy
eigenstate that is separated from the continuous spectrum
by a gap. Non-adiabatic transfer of population from this
discrete state to the continuum, resulting from a time de-
pendence of the coupling and the level position, is the
subject of this paper. This problem is a natural general-
ization of the well-known Landau-Zener model [1] which
is widely used for description of chemical reactions [2],
atomic collisions [3], charge transfer at a surface [4] or in
the course of cluster collisions [5], as well as in a number
of other fields [6]. Here we show that this problem has
an exact analytical solution at least for the two particular
cases of time dependencies.

Note that interaction of a quantum level with a uni-
form infinite continuum results in an irreversible decay of
the level population. This effect has already been consid-
ered in a number of publications [7], including the case of
longitudinal relaxation in a two-level system with linear
time dependence of the level position [8]. We concentrate
here on another aspect of the problem, which is related
to the presence of the continuum edge, inhibiting the ir-
reversible decay of the level population. We note that the
sharp edge of the continuum does not allow to consider
the problem either with the help of Fermi Golden Rule,
or by employing WKB or Stueckelberg methods.

Consider a level-band system shown in Figure 1 at a
finite time. The Schrödinger equation for the probability
amplitude Ψ0 to be at the level |0〉 of energy ∆(t), and the
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Fig. 1. Level-band system with time dependent parameters.
Diabatic states (dashed lines) differ from the adiabatic ones
(solid lines). A discrete adiabatic state of energy E(t) remains
below the band even when the corresponding diabatic state of
the energy ∆(t) enters the band. We consider the continuum
limit β → 0.

band states amplitudes Ψn reads

i
.

Ψ0 = ∆(t)Ψ0 + V (t)
N∑

n=1

Ψn,

i
.

Ψn = nβΨn + V ∗(t)Ψ0, (1)

where � = 1 and index n numerates the states of a broad
band, resulting in a continuum at the limit β → 0. In this
limit, the discrete eigenvalue E(t) of the Hamiltonian cor-
responds to the adiabatic level underneath the continuum
edge. For a given time t, the energy E(t) is given by the
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negative root of the algebraic equation

E(t) − ∆(t) =
N∑

n=1

|V (t)|2
E(t) − nβ

= W (t) ln
( −E(t)

X − E(t)

)
,

(2)
where W (t) = |V (t)|2 /β is the instantaneous value of the
static resonant transition rate in the level-band system,
suggested by the Fermi golden rule, while X = Nβ is
a large bandwidth. The corresponding adiabatic state is
given as

|Ψad〉 =
1
A

(
|0〉 +

N∑
n=1

V (t)
E(t) − nβ

|n〉
)

, (3)

with

A =

√√√√1 +
N∑

n=1

|V (t)|2
|E(t) − nβ|2 =

√
1 − W (t)

E(t)
, (4)

where we have replaced summation by integration and
extended the upper integration limit to infinity. The first
order perturbation theory suggests the explicit form for
the coefficients of the sum equation (3) in the limit of a
dense spectrum and a small individual coupling.

We first consider the case of a constant coupling V (t) =
V and a linear time dependence ∆(t) = αt of the level
position, which belongs to the Demkov-Osherov [9] class of
problems exactly solvable by the Laplace contour integral
method [10]. For the initial condition Ψ0(t = −∞) = 1 the
solution reads [11]

Ψ0 =
1√
2π

∫
C

eiy[T+w ln(−y/xe)− y
2 ]dy,

Ψn =
1√
2π

∫
C

V eiy[T+w ln(−y/xe)− y
2 ]

y − nβ
dy, (5)

where e is the base of natural logarithms, T = t
√

α is
dimensionless time, w = W/

√
α is an adiabaticity param-

eter, ε = E(t)/
√

α and x = X/
√

α are scaled time depen-
dent detuning of the adiabatic state and the bandwidth
respectively. The integration contour C which extends
from −∞ to +∞ should be rotated counterclockwise by
the angle π/4 in order to ensure rapid convergence of the
integral. Projection of the state vector |Ψ〉 =

∑N
n=0 Ψn |n〉

to the adiabatic state equation (3) with the allowance of
equation (4) after the integration over states of the con-
tinuum yields

〈Ψad|Ψ〉 =
∫
C

eiy[T+w ln(−y/xe)− y
2 ]

(
y − ε + w ln −ε

y

)
dy

(y − ε)
√

2π(1 − w
ε )

·

(6)
In Figure 2 we depict the probability |Ψad|2 = |〈Ψad|Ψ〉|2
as function of T and w. Along with decay of the adia-

Fig. 2. Probability to stay on the discrete adiabatic level as
a function of dimensionless parameters t

√
α and W/

√
α for

time-independent coupling and a bandwidth X/
√

α = 700.

batic state at a rate decreasing with an increase of the
interaction w, one sees a remainder of the oscillatory be-
havior typical of coherent processes. The stationary phase
analysis of the integrals equations (5) leads to a negligi-
ble contribution. The dominating contribution comes from
a singularity near the point y = ε for the integral equa-
tion (6). Employing the asymptotic solution ε = −xe−T/w

of equation (2) for long T yields

|Ψad|2 � 2π3wxe−T/w ,

|Ψ0|2 � e−2πwT , (7)

which shows that for a slow motion, α → 0 (that is
w → ∞), the asymptotic population of the adiabatic
state decays much slower than the population |Ψ0|2 of
the diabatic state |0〉. From equation (7) one see that
for T/w > ln

(
2π3wx

)
/(1 − 2πw2) the adiabatic state

population indeed exceeds the diabatic one, and the de-
cay time of the adiabatic state linearly increases with the
interaction W .

We now consider another case of a constant detuning
∆ and an exponentially rising [12] coupling V (t) = V eγt.
For a large bandwidth X the problem can be solved ex-
actly up to the first order perturbation theory over a small
parameter a = 1/ lnX in terms of a non-standard type of
special functions. These functions depend only on two ar-
guments: the properly scaled time and the detuning. By
the exact solution we mean that the functions can be given
either in the form of an explicit and strongly converging
power series or with the help of an explicit integral repre-
sentation, which allow one to compute efficiently the value
of the function for all values of the arguments.

In order to make calculations more compact, we choose
1/2γ as a time unit, denote W = etV 2/β, and set the
energy reference point at the level energy – such that the
band starts at the point ∆ > 0 and ends at the point X .
We look for the solution of equation (1) in a form of the
series

Ψ0(t) =
∞∑

k=0

ak(−iW )k

k!
, (8)
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which for the initial condition Ψ0(t = −∞) = 1 implies
a0 = 1. Direct substitution of this ansatz to equation (1)
after performing the integration over the continuum re-
sults in the recurrent relation for the coefficients

ak = ak−1 ln
(

i∆ + k − 1
2

iX + k − 1
2

)
= ak−1 ln

(
i∆ + k − 1

2

iX

)
,

(9)
where in the last equality we have taken into account that
the bandwidth X = e1/a is very large.

We therefore obtain an exact series

Ψ0(t) = 1 +
∞∑

k=1

(−iW )k

k!

k∏
p=1

ln
(

i∆ + p − 1
2

ie1/a

)
, (10)

which can be approximated with high precision by

Ψ0(t) =
∞∑

k=0

(iW/a)k

k!
(∆ − ik − i/2)−a(k+i∆)

(∆ − i/2)ai∆
(11)

for small a. In order to obtain this approximation, one
has to write the product in equation (10) in the form of
an exponent of the sum

k∑
p=1

ln
[
ln

i∆ + p − 1
2

i exp 1/a

]
� ln

−1
ak

+ a ln
k∏

p=1

i
i∆ + p − 1

2

,

(12)
express the product in the logarithm in terms of Γ -
functions, and make use of the asymptotic formula [13]
for lnΓ (z). Both series equations (10, 11) are rapidly con-
verging and are equally efficient for computation at small
and moderate values of the argument W .

In order to find a representation suitable for computa-
tion at large W, we note that the sum equation (11) can
be given in the form of a contour integral

Ψ0(t) =
∫
C

(
W

ia

)−y

Γ (y)
(∆ + iy − i/2)a(y−i∆)

2πi (∆ − i/2)−ai∆
dy (13)

along a contour C circumventing all the negative inte-
ger points y = −k, at which the Γ -function has residuals
(−1)k/k!. Employing the asymptotic of Γ (z), one obtains
the expression

Ψ0(t) �
∫
C

(∆ − i/2)ai∆ (iay/We)y

i
√

2πy (∆ + iy − i/2)a(i∆−y)
dy, (14)

convenient for the saddle-point calculation [14] at moder-
ate and large W . The saddle point locates near y = −iW/a
and can easily be found numerically along with the second
derivative giving the integrand width. For an extremely
large W/a one finds a simple analytic expression for the
probability

|Ψ0|2 � exp
[
−2W + a∆

W/a + ∆
+ 2a∆ arctan

1
2∆

]
. (15)

Fig. 3. Exponentially increasing interaction V (t) = V eγt.
Transition probability ρ = 1 − |〈Ψad|Ψ〉|2 as a function of di-
mensionless parameters W/2γ and the scaled detuning ∆/2γ
for ln(X/2γ) = 20. For W/2γ > 1.3 we employ the asymp-
totic formula, suggested by equation (14). At large W one also
sees the asymptotic two-step dependence ρ(∆) suggested by
equation (15).

The results of the calculation are shown in Figure 3. One
sees that at short times and for small detunings the pop-
ulation as a function of W experiences dying oscillation
at a “cooperative” Rabi frequency ∼ 1/a, which is typical
of the process of coherent damping [15]. The asymptotic
value of the transition probability is small and amounts to
2a at most. Far from the resonance at ∆ � γ the transi-
tion probability is zero until the exponentially rising cou-
pling reaches the detuning by the order of magnitude, that
is W ∼ ∆. After that it approaches the asymptotic value
a. We also note that for the exponentially rising coupling
the adiabatic state practically coincides with the level |0〉,
and the normalization constant equation (4) is close to
unity.

For a double passing of resonance, which is typi-
cal of collisions, the classical Landau-Zener formula ig-
nores the phase correlation between the forward and the
back passages. It yields the transition probability Ptr =
2e−2πV 2/α(1 − e−2πV 2/α) that has a maximum, when the
relative velocity α of the levels displacement is of the or-
der of the squared levels coupling V 2. For large and small
velocities Ptr vanishes as 1/v for the upper limit, and as
e−1/v for the lower one. For the double non-adiabatic tran-
sitions at the continuum edge the similar transition prob-
ability behaves in the same way; it also has a maximum,
and it vanishes at the extremes as well, although with
different asymptotics.

In Figure 4 we show these dependencies for both
problems considered. Here we have employed the rela-
tion Ptr = 1 − |Ψ0|4 for the second model, valid for |Ψ0|
close to |Ψad|, whereas for the first model we have taken
into account that the return of population may occur via
the adiabatic as well as via the diabatic states that are
not orthogonal. In the last case the transition probabil-
ity reads Ptr = 1 − |Ψ0|4 − |Ψad|4 + |Ψ0|2|Ψad|2/A2, where
the probability amplitudes are given by equations (5, 6)
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Fig. 4. Transition probability Ptr after double passage of the
continuum edge in function of the collision velocity v (in atomic
units). Exponentially rising interaction for small detuning ∆ =
e−7 a.u. (solid line), and for large ∆ = e−4 a.u. detunings
(dashed line), as compared to the coupling W = 0.001 a.u.,
for the band width X ∼ 1 a.u. is shown in contrast with the
case of a linear dependence of the detuning (dot-dash line). In
the last case the reverse of the linear time dependence occurs
at time moment τr corresponding to the adiabatic level at the
position ∆ = −W/e underneath the band edge.

and the normalization constant by equation (4). We note
that the asymptotic behavior is very different for the two
considered models: the linearly changing detuning results
in a power dependence at small velocity and gives a slow
decrease for fast collisions, whereas the exponentially in-
creasing coupling manifests 1/(− log v) behavior for slow
interactions and an inverse power law for high speeds.

We conclude by summarizing the main results. We
have considered two particular cases of time dependent
quantum systems consisting of a level interacting with a
broad continuous band: the case of a linearly changing de-
tuning of the level with a constant coupling, and the case
of an exponentially rising coupling at a fixed detuning.
In both processes one can observe some elements of co-
herent behavior which manifests itself in non-exponential
and under certain conditions even oscillatory behavior of
the populations. In both processes the finite width X of
the continuum is important, although it enters the result
in a “weak” way via the combination log X . As in the
classical Landau-Zener problem, in both cases the transi-
tion probability in the course of sequential direct and re-
versed process decorrelated in phase behaves qualitatively
in the same way. It has a maximum at a certain rate of
the parameter variation and vanishes at the extremes of
small and high rates. However, the asymptotic behavior
of the probability for high and slow collisions are quite
different. The most interesting feature of the process is
the inverse logarithmic dependence on the velocity, which
occurs when the coupling growth rate is slow. The most
important fact common to both cases is that the exponen-
tial decay given by Fermi’s Golden Rule in the case of a
linearly moving level is strongly inhibited by the presence
of the continuum edge and is completely suppressed for
the exponentially rising interaction.
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